A Cognitive Framework for Strategic AI Communication

Lukas W. Mayer, Mark Steyvers Department of Cognitive Sciences, University of California, Irvine

Introduction

Al assistants are designed to help people do tasks. However, people do not always want help. Even worse, **Al assistance that is perceived redundant/unreliable is quickly turned off**, extinguishing any future possibility for beneficial interactions. We created a decision-making task

Method

198 participants judged moving grids, determining which **column** produces the most **black squares**. There are **40 trials, 10 for each difficulty level**. Trials are **ordered by difficulty** (e.g. easy to hard, hard to easy).

Conditions (6 x 2 Orders):
No Al help (Control)

Unsolicited sub-conditions:

- Al help pop-up on every trial (always)
- AI help pop-up on 50% of trials, random (random_50)
- AI help pop-up on the 50% hardest trials (high_diff)

with a **deliberately annoying Al** assistant to study **when people turn Al off**, and possibly, back on.

- Al upon request (Solicited)
 Condition UI
- Unprompted AI pop-ups (Unsolicited)

ABCDEFGHIJABCDEFGHIJ

Target column differs from base columns in production rate by: 1%, 10%, 20%, 30%

Al Pop-up **(Unsolicited only)**: Response options available after 6s wait. Al help (80% Acc.) available 5s into trial; **Al load times: 6s Unsolicited** (6s wait + 6s load), **12s Solicited**

Results

- People over-adopt AI advice in easier trials, under-adopt in harder trials (limited metacognition?)
- Al conditions show lower productivity (Correct/Minute) than Control, but productivity

Model:Next stepsGLMM (Logit)Incorporate our model ofwith linearIncorporate our model ofsplineshuman behavior intoAUC: 0.82Transition function ofPop-up modePOMDP, estimate optimalalwayspolicy for when to provideAlwaysAl pop-ups for maximumhigh_diffong-term productivity.

maximizing AI use would be significantly better than Control

 Turning off AI is predicted by recent frequency of AI pop-ups, turning AI back on is predicted by trial difficulty

Data Model **References** Chen, G., Li, X., Sun, C., & Wang, H. (2024). Learning to make adherence-aware advice. In The twelfth international conference on learning representations. Noti, G., & Chen, Y. (2023). Learning when to advise human decision makers. In Proceedings of

the thirty-second international joint conference on artificial intelligence (pp. 3038–3048).